Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure

نویسندگان

  • Timo Vesala
  • Sanna Sevanto
  • Tiia Grönholm
  • Yann Salmon
  • Eero Nikinmaa
  • Pertti Hari
  • Teemu Hölttä
چکیده

The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO2 concentration based on leaf gas exchange measurements. Manufactures of leaf gas exchange measurement systems should incorporate leaf water potentials in measurement set-ups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seasonal trends and relationships of light, temperature and leaf physiological traits of sugar beets (Beta vulgaris L.) grown under semi-arid, Mediterranean conditions

The seasonal changes of leaf physiological traits and its relationship with abiotic factors (photosynthetic active radiation-PAR, leaf temperature-Tleaf, air temperature-Tair, Tleaf - Tair- ΔT) were studied on sugar beets grown under the semi-arid conditions of central Greece. Sugar beet (Beta vulgaris L.) cv Rizor was established in a Randomised Complete Block design experiment for two years (...

متن کامل

تاثیرسلنیم فلزی و نانو بر خصوصیات فیزیولوژیک گیاه گوجه فرنگی

Selenium (Se) is an important microelement for plants and has been shown to improve growth under normal and stressed conditions. In this study, effect of Se and nano-selenium (N-Se) on hydroponically-grown tomato (Lycopersicum esculentum Mill. cv. ‘Halil’) on photosynthesis, antioxidant activity and total polyphenolic content was assessed. A factorial experiment with three temperatu...

متن کامل

Polley: Crop Responses to Global Change

agriculture is to feed the world’s burgeoning population, yields of water-limited crops must be improved substanYield of water-limited crops is determined by crop water use and tially. Efforts to accomplish this have concentrated on by plant water use efficiency, each of which will be affected by the anticipated rise in atmospheric carbon dioxide (CO2) concentration increasing the fraction of a...

متن کامل

بررسی اثر ضدتعرقی کائولین بر برخی ویژگی‌های فیزیولوژیک چهار رقم زیتون

To reduce transpiration and increase water use efficiency of olive trees in Ahvaz, the antitranspirant effects of of three levels of kaolin (0, 2.5% and 5%) on four varieties of olive (Mission, Conservolea, Keylet, Bledy) was carried out in a four-month period, with three replications. The results showed that Kaolin have a significant effect on plant water potential, leaf relative water content...

متن کامل

Increased leaf area dominates carbon flux response to elevated CO2 in stands of Populus deltoides (Bartr.)

We examined the effects of atmospheric vapor pressure deficit (VPD) and soil moisture stress (SMS) on leafand stand-level CO2 exchange in model 3-year-old coppiced cottonwood (Populus deltoides Bartr.) plantations using the large-scale, controlled environments of the Biosphere 2 Laboratory. A short-term experiment was imposed on top of continuing, long-term CO2 treatments (43 and 120 Pa), at th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017